3D Active Shape Model Segmentation with Nonlinear Shape Priors

نویسندگان

  • Matthias Kirschner
  • Meike Becker
  • Stefan Wesarg
چکیده

The Active Shape Model (ASM) is a segmentation algorithm which uses a Statistical Shape Model (SSM) to constrain segmentations to 'plausible' shapes. This makes it possible to robustly segment organs with low contrast to adjacent structures. The standard SSM assumes that shapes are Gaussian distributed, which implies that unseen shapes can be expressed by linear combinations of the training shapes. Although this assumption does not always hold true, and several nonlinear SSMs have been proposed in the literature, virtually all applications in medical imaging use the linear SSM. In this work, we investigate 3D ASM segmentation with a nonlinear SSM based on Kernel PCA. We show that a recently published energy minimization approach for constraining shapes with a linear shape model extends to the nonlinear case, and overcomes shortcomings of previously published approaches. Our approach for nonlinear ASM segmentation is applied to vertebra segmentation and evaluated against the linear model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Shape Priors for 3D Branching Structures in Vasculature Segmentation

In this paper we present a multiscale non-parametric shape model for the segmentation of 3D branching structures such as vasculature or biological neuronal networks. The proposed technique models these structures as surfaces formed by varying-sized interconnected cylinders using higher order active contours. A geometric shape model is built using this approach and incorporated into a surface es...

متن کامل

Variational Segmentation with Shape Priors

We discuss the design of shape priors for variational regionbased segmentation. By means of two different approaches, we elucidate the critical design issues involved: representation of shape, use of perceptually plausible dissimilarity measures, Euclidean embedding of shapes, learning of shape appearance from examples, combining shape priors and variational approaches to segmentation. The over...

متن کامل

Geodesic Active Contours with Combined Shape and Appearance Priors

We present a new object segmentation method that is based on geodesic active contours with combined shape and appearance priors. It is known that using shape priors can significantly improve object segmentation in cluttered scenes and occlusions. Within this context, we add a new prior, based on the appearance of the object, (i.e., an image) to be segmented. This method enables the appearance p...

متن کامل

Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.

PURPOSE Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. METHODS In this paper, th...

متن کامل

Shape Priors in Medical Image Analysis: Extensions of the Level Set Method

The 3D medical image segmentation problem typically involves assigning labels to 3D pixels, called voxels, which comprise a given medical volume. In its simplest form the segmentation problem involves assigning the labels "part of the structure of interest" or "not part of the structure" to each voxel using locally measured properties and prior knowledge of human anatomy. Robust segmentation re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 14 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011